103 research outputs found

    Robustness analysis of a nucleic acid controller for a dynamic biomolecular process using the structured singular value

    Get PDF
    In the field of synthetic biology, theoretical frameworks and software tools are now available that allow control systems represented as chemical reaction networks to be translated directly into nucleic acid-based chemistry, and hence implement embedded control circuitry for biomolecular processes. However, the development of tools for analysing the robustness of such controllers is still in its infancy. An interesting feature of such control circuits is that, although the transfer function of a linear system can be easily implemented via a chemical network of catalysis, degradation and annihilation reactions, this introduces additional nonlinear dynamics, due to the annihilation kinetics. We exemplify this problem for a dynamical biomolecular feedback system, and demonstrate how the structured singular value (μ) analysis framework can be extended to rigorously analyse the robustness of this class of system. We show that parametric uncertainty in the system affects the location of its equilibrium, and that this must be taken into account in the analysis. We also show that the parameterisation of the system can be scaled for experimental feasibility without affecting its robustness properties, and that a statistical analysis via Monte Carlo simulation fails to uncover the worst-case uncertainty combination found by μ-analysis.</p

    A simplified modelling framework facilitates more complex representations of plant circadian clocks

    Get PDF
    This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All MATLAB files used to generate the results presented in the study are available from https://github.com/mathiasfoo/essystemplantcircadian.The circadian clock orchestrates biological processes so that they occur at specific times of the day, thereby facilitating adaptation to diurnal and seasonal environmental changes. In plants, mathematical modelling has been comprehensively integrated with experimental studies to gain a better mechanistic understanding of the complex genetic regulatory network comprising the clock. However, with an increasing number of circadian genes being discovered, there is a pressing need for methods facilitating the expansion of computational models to incorporate these newly-discovered components. Conventionally, plant clock models have comprised differential equation systems based on Michaelis-Menten kinetics. However, the difficulties associated with modifying interactions using this approach—and the concomitant problem of robustly identifying regulation types—has contributed to a complexity bottleneck, with quantitative fits to experimental data rapidly becoming computationally intractable for models possessing more than ≈50 parameters. Here, we address these issues by constructing the first plant clock models based on the S-System formalism originally developed by Savageau for analysing biochemical networks. We show that despite its relative simplicity, this approach yields clock models with comparable accuracy to the conventional Michaelis-Menten formalism. The S-System formulation also confers several key advantages in terms of model construction and expansion. In particular, it simplifies the inclusion of new interactions, whilst also facilitating the modification of regulation types, thereby making it well-suited to network inference. Furthermore, S-System models mitigate the issue of parameter identifiability. Finally, by applying linear systems theory to the models considered, we provide some justification for the increased use of aggregated protein equations in recent plant clock modelling, replacing the separate cytoplasmic/nuclear protein compartments that were characteristic of the earlier models. We conclude that as well as providing a simplified framework for model development, the S-System formalism also possesses significant potential as a robust modelling method for designing synthetic gene circuits.Royal SocietyEngineering and Physical Sciences Research Council (EPSRC)Biotechnology and Biological Sciences Research Council (BBSRC

    System identification and control of the broken river

    Get PDF

    Exploiting the dynamic properties of covalent modification cycle for the design of synthetic analog biomolecular circuitry

    Get PDF
    Background: Cycles of covalent modification are ubiquitous motifs in cellular signalling. Although such signalling cycles are implemented via a highly concise set of chemical reactions, they have been shown to be capable of producing multiple distinct input-output mapping behaviours – ultrasensitive, hyperbolic, signal-transducing and threshold-hyperbolic. Results: In this paper, we show how the set of chemical reactions underlying covalent modification cycles can be exploited for the design of synthetic analog biomolecular circuitry. We show that biomolecular circuits based on the dynamics of covalent modification cycles allow (a) the computation of nonlinear operators using far fewer chemical reactions than purely abstract designs based on chemical reaction network theory, and (b) the design of nonlinear feedback controllers with strong performance and robustness properties. Conclusions: Our designs provide a more efficient route for translation of complex circuits and systems from chemical reactions to DNA strand displacement-based chemistry, thus facilitating their experimental implementation in future Synthetic Biology applications

    PID and state feedback controllers using DNA strand displacement reactions

    Get PDF
    Nucleic acid-based chemistry is a strong candidate framework for the construction of future synthetic biomolecular control circuits. Previous work has demonstrated the capacity of circuits based on DNA strand displacement (DSD) reactions to implement digital and analogue signal processing in vivo , including in mammalian cells. To date, however, feedback control system designs attempted within this framework have been restricted to extremely simple proportional or proportional-integral controller architectures. In this letter, we significantly extend the potential complexity of such controllers by showing how time-delays, numerical differentiation (to allow PID control), and state feedback may be implemented via chemical reaction network-based designs. Our controllers are implemented and tested using VisualDSD, a rapid-prototyping tool that allows precise analysis of computational devices implemented using nucleic acids, via both deterministic and stochastic simulations of the DSD reactions.11Nscopu

    Biologically inspired design of feedback control systems implemented using DNA strand displacement reactions

    Get PDF
    The use of abstract chemical reaction networks (CRNs) as a modelling and design framework for the implementation of computing and control circuits using enzyme-free, entropy driven DNA strand displacement (DSD) reactions is starting to garner widespread attention in the area of synthetic biology. Previous work in this area has demonstrated the theoretical plausibility of using this approach to design biomolecular feedback control systems based on classical proportional-integral (PI) controllers, which may be constructed from CRNs implementing gain, summation and integrator operators. Here, we propose an alternative design approach that utilises the abstract chemical reactions involved in cellular signalling cycles to implement a biomolecular controller - termed a signalling-cycle (SC) controller. We compare the performance of the PI and SC controllers in closed-loop with a nonlinear second-order chemical process. Our results show that the SC controller outperforms the PI controller in terms of both performance and robustness, and also requires fewer abstract chemical reactions to implement, highlighting its potential usefulness in the construction of biomolecular control circuits

    Restoring circadian gene profiles in clock networks using synthetic feedback control

    Get PDF
    The circadian system—an organism’s built-in biological clock—is responsible for orchestrating biological processes to adapt to diurnal and seasonal variations. Perturbations to the circadian system (e.g., pathogen attack, sudden environmental change) often result in pathophysiological responses (e.g., jetlag in humans, stunted growth in plants, etc.) In view of this, synthetic biologists are progressively adapting the idea of employing synthetic feedback control circuits to alleviate the effects of perturbations on circadian systems. To facilitate the design of such controllers, suitable models are required. Here, we extend our recently developed model for the plant circadian clock—termed the extended S-System model—to model circadian systems across different kingdoms of life. We then use this modeling strategy to develop a design framework, based on an antithetic integral feedback (AIF) controller, to restore a gene’s circadian profile when it is subject to loss-of-function due to external perturbations. The use of the AIF controller is motivated by its recent successful experimental implementation. Our findings provide circadian biologists with a systematic and general modeling and design approach for implementing synthetic feedback control of circadian systems

    On the stability of nucleic acid feedback control systems

    Get PDF
    Recent work has shown how chemical reaction network theory may be used to design dynamical systems that can be implemented biologically in nucleic acid-based chemistry. While this has allowed the construction of advanced open-loop circuitry based on cascaded DNA strand displacement (DSD) reactions, little progress has so far been made in developing the requisite theoretical machinery to inform the systematic design of feedback controllers in this context. Here, we develop a number of foundational theoretical results on the equilibria, stability, and dynamics of nucleic acid controllers. In particular, we show that the implementation of feedback controllers using DSD reactions introduces additional nonlinear dynamics, even in the case of purely linear designs, e.g. PI controllers. By decomposing the effects of these non-observable nonlinear dynamics, we show that, in general, the stability of the linear system design does not necessarily imply the stability of the underlying chemical reaction network, which can be lost under experimental variability when feedback interconnections are introduced. We provide an in-depth theoretical analysis, and present an example to illustrate when the linear design does not capture the instability of the full nonlinear system implemented as a DSD reaction network, and we further confirm these results using Visual DSD, a bespoke software tool for simulating nucleic acid-based circuits. Our analysis highlights the many interesting and unique characteristics of this important new class of feedback control systems. (C) 2020 Elsevier Ltd. All rights reserved.11Nsciescopu
    corecore